Light particles with baryon and lepton numbers Julian Heeck **Brookhaven Forum 2021** 11/3/2021 Based on arXiv:2009.01256 (PLB 2021) ### Particles beyond the SM - Heavy new particles are captured in SMEFT, no matter their quantum numbers. - Light new particles φ require new EFT of SM + φ . - Need to know the quantum numbers of φ! - For m_{φ} at or below GeV: φ is neutral under U(1)xSU(3). - Spin 0: light scalar or pseudoscalar (ALP EFT). - Spin ½: sterile neutrino. - Spin 1: dark photon or coupled to B/L_{α} currents. Can φ carry global symmetries? # Global symmetries - Simplest case: φ carries a Z_N or dark U(1) or SU(N). - EFT operators factorize: $|\phi|^2 x$ (SMEFT operator),... - Exhaustively discussed as (light) dark matter. # Global symmetries - Simplest case: φ carries a Z_N or dark U(1) or SU(N). - EFT operators factorize: $|\phi|^2 x$ (SMEFT operator),... - Exhaustively discussed as (light) dark matter. - ~ final possibility: φ carries baryon/lepton number: - Fermion N with L = 1: LHN coupling, mixing with neutrinos => sterile neutrino. - [recent collection of constraints: Bolton, Deppisch and Dev, 1912.03058] - Fermion χ with B = 1: EFT coupling to e.g. χ udd/ Λ ², mixing with neutral baryons => sterile neutron. - [popular for neutron decay anomaly, e.g. Fornal & Grinstein, 2007.13931] #### Sterile neutron: fermion with B=1 Effective Lagrangian: $$\mathcal{L}_{\chi} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \left(\frac{u_i d_j d_k \chi_L^c}{\Lambda_{ijk}^2} + \frac{Q_i Q_j d_k \chi_L^c}{\tilde{\Lambda}_{ijk}^2} + \text{h.c.}\right)$$ • For $m_{\chi} \lesssim m_{n}$, one has search channels - The latter probe Λ_{udd} < 10¹⁵ GeV if m_{χ} ~ 0. - All couplings Λ_{iik} lead to these channels at loop level! - Notice that χ is stable here and thus (asymmetric) DM. #### Sterile neutron: fermion with B=1 - For $m_{\chi} > m_{\eta}$, no more proton/neutron decays. - Still possible to look for rare decays in b/c/τ factories via ``` {\rm baryon} \to {\rm meson} + \chi \\ {\rm meson} \to {\rm baryon} + \bar{\chi} ``` - Requires χ coupling to 2nd/3rd gen quarks. [Nelson++, PRD '17 & '19] - Matrix elements <baryon|qqq|meson> unknown. - χ is unstable, but typically leaves detector; mimics baryon-number violating decays! New signatures to look for! #### Dedicated analyses required to obtain sensitivity, but LHCb already has $10^{14} \Sigma^+$; HyperCP has $10^9 \Xi^-$. Λ_c abundantly produced at Belle II, BESIII, LHCb. Belle II will collect $5x10^{10}$ B-meson decays. ### Global symmetries for scalars - ~final possibility: scalar φ carries baryon/lepton number: - δ with L = 2: EFT coupling to Weinberg op. δ (LH)²/ Λ ². [Berryman et al, 1802.00009; De Gouvêa et al, 1910.01132] - φ with B = L = 1: EFT coupling φQQL/Λ³, => sterile leptoquark. [McKeen & Pospelov, 2003.02270] - ξ with B = 2: EFT coupling $\overline{\xi}$ (udd)²/Λ⁶. - Assume that scalars don't get VEVs. ### Sterile leptoquark: scalar with B=L=1 Effective Lagrangian for SM + φ: $$\mathbf{L}_{\phi} = |\partial\phi|^2 - m_{\phi}^2 |\phi|^2 + \left(\frac{\mathsf{d}_i \mathsf{u}_j \mathsf{u}_k \ell_l \phi^*}{\Lambda_{ijkl}^3} + \frac{\mathsf{d}_i \mathsf{u}_j \mathsf{Q}_k \mathsf{L}_l \phi^*}{\tilde{\Lambda}_{ijkl}^3} \right. \\ \left. + \frac{\mathsf{Q}_i \mathsf{Q}_j \mathsf{u}_k \ell_l \phi^*}{\Lambda_{ijkl}'^3} + \frac{\mathsf{Q}_i \mathsf{Q}_j \mathsf{Q}_k \mathsf{L}_l \phi^*}{\tilde{\Lambda}_{ijkl}'^3} + \mathsf{hc} \right)$$ - Further restriction possible by assigning lepton flavor. - Low energy: $\frac{\Lambda_{\rm QCD}^3}{\Lambda_{\rm udde}^3} \, {\rm pe} \phi^* + \dots$ - Possible UV completion with leptoquarks: ### Sterile leptoquark: scalar with B=L=1 - For m_o < m_n, we have n → φ ν for all Λ_{ijkl} indices! For lighter φ: p → φ ℓ⁺ [for mφ = 0: Super-K, PRL '15] - Can be improved with inclusive searches. [Heeck & Takhistov, 1910.07647] - Mass close to H: hydrogen → φ γ. [McKeen & Pospelov, 2003.02270] - m_p > m_n difficult to probe in rare decays, better constrained by LQ searches at LHC. ### Larger B and L? - E.g. scalar ξ with B = 2: EFT coupling $\overline{\xi}(udd)^2/\Lambda^6$. - Light ξ can give $nn \rightarrow \xi \pi^0$ or $(A,Z) \rightarrow (A-2,Z) + \xi$. - Heavier ξ difficult to probe, *unless it is dark matter!* ### Larger B and L? - E.g. scalar ξ with B = 2: EFT coupling $\overline{\xi}(udd)^2/\Lambda^6$. - Light ξ can give nn → ξ π⁰ or (A,Z) → (A-2,Z) + ξ . - Heavier ξ difficult to probe, *unless it is dark matter!* - DM with B/L could decay specific antimatter final states: - ϕ with B=-2 and L=-1: $\mathcal{L} = \frac{\overline{\phi}^c n \, \overline{p}^c e}{\Lambda^2} + \mathrm{h.c.}$ - For $m_{\rm d} < m_{\rm \phi} < m_{\rm n} + m_{\rm p}$, DM decays into anti-deuteron + e⁺, not into $\overline{\rm p}$. - Same trick to generate anti-helium without p, might explain AMS events. [Heeck & Rajaraman, 1906.01667] #### Summary - Light new particles becoming more popular, e.g. dark photons, sterile neutrinos, ALPs. - Often overlooked: new particles could carry B or L. - Changes allowed couplings and pheno. - For sub-GeV masses: neutron and proton decays, can be improved in SK, HK, JUNO, DUNE. - Invisible n decays (n → ϕ ν, nn → ξ) powerful probe. - For m > GeV, hadron decays testable in $b/c/\tau$ factories - Often kinematically stable, forms (asymmetric) DM. - DM decays can produce odd anti-matter signals. More baryons & leptons out there?!